

Liberté Égalité Fraternité

THE FRENCH AEROSPACE LAB

www.onera.fr

Liberté Égalité Fraternité

ONERA Airborne experiment over south Greenland for ice sheet multi-frequency SAR imagery

SCI-329 RSM on Capabilities for Sensing, Search and Surveillance in the Arctic 19 June 2023, Nuuk, Greenland

Rémi Baqué, Pascale Dubois-Fernandez, Hubert Cantalloube

This document and the information contained herein is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

Let me tell you a story !

It all started as a quite trip to L.A. USA ...

FHRJE: "Goose bay, we'va had a problem!" T.A.C: "Okay, we copy that."

ONERA Electromagnetic and Radar Department

ONERA Technology Readiness Level

ONERA Airbone Radar Prototype Facilities (PoC)

ONERA SAR SETHI Payloads

Radar	V/UHF	L	X	X-UHR	Ku	
Central Frequency (MHz)	340	1325	9500	9500	16500	
Bandwidth (MHz)	240	150	1500	4000	2000	
Resolution (cm)	70	100	10	4	8	
Polarization	Full	Full	Full	V-v/h ou H-h/v	Full	
Transmit peak power (W)	500	500	300	8000	300	
Antenna	dipoles	Patch array	Horn	Parabolic	Horn	
Elevation Beamwidth	100°	30°	16°	7°	16°	
Azimuth Beamwidth	50°	10°	16°	5°	16°	
Waveform generator	2 voies, 2.5 GS/s, 1 GHz, 16 bits					
Sampling system	4 voies, 2 GS/s, 800 MHz, 12 bits					
Recording / storage	3.4 GB/s, 7 TB					

Sensor	LWIR	HYSPEX VNIR	HYSPEX SWIR	Optical
Number of pixels	640x512	1600	320	7256x5462
Swath	385 x 308 m	1600 m	700 m	1300 x 950
Spectral domain	7,7 – 9,3 µm	0,4 - 1 µm	1 - 2,5 µm	0,4 - 0,8 µm
Number of bands	1	160	256	1
Pixel sampling @ 9000 ft [perp. x paral. flight]	0,6 m	0,51 m x 1,03 m	2,06 m x 2,06 m	0,17 m x 0,17 m
Looking	Nadir	Nadir	Nadir	Aligned with SAR

ONERA previous SAR campaign and studies

Context : 30 September 2017

It all started as a quite trip to L.A. USA ...

FHRJE: "Goose bay, we'va had a problem!" T.A.C: "Okay, we copy that."

Engine parts localization and recovery missions

SETHI detection capacity identified by BEA experts (10-11/2017)

Penetration versus target RCS tradeoff not clear prior to mission.

Risk mitigation in France in December 2017

Tests and theoretical study

Table 1.11 Studies on microwave penetration into snow and ice, * 2p measured as transmission (one-way) opposed to reflection (two-ways). # Maarund thickness of more bridges over crevenses.

Location	$z \{m\}$	f[GHz]	Comment	Reference	
Antarctic plateau	8,1	10.3	Zp*	Rott et al. (1993)	
Antarctic plateau	21.7	5.2	20	Rott et al. (1993)	
Autarctic plateau	35-45	1.75	24	Paper II	
Lake Vostok, Antarctica	>4.7	10.0	2p#	Davis and Poznyak (1993)	
Coastal DML, Antarctica	17.5±2.9	1.75	z,	Paper II	
Fimbulisen, Antarctica	9.6±0.8	1,75	24	Paper II	
Amery ice shelf, Antarctica	5.7 ± 1.2	13.2	2p#	Lacroix et al. (2007)	
Greenland, dry snow zone	27	5.3	2.00	Hoen and Zebker (2000)	
Ryder glacier, Greenland	20	5.3	2.0	Horn and Zebber (2000)	
Geikie ice cap, Greenland	13	5.2	24	Dall et al. (2001)	
Greenland, cold marginal ice	60-120	1.2	2.4	Rigsot et al. (2001)	
Brady glacier, Alaska	12 ± 6	1.2	24	Rignot et al. (2001)	
Brady glacier, Alaska	4±2	5.3	24	Rigsot et al. (2001)	
Kongsvegen glacier, Svalhard	12.0 ± 4.3	1.2	24	Paper III	
Kongwegen glacier, Svalbard	3.7±2.1	2.5	z,	Paper III	
Kongwegen glacier, Svalbard	3.5 ± 2.1	5.3	2.0	Paper III	

System preparation and adaptation

Risk mitigation over Kangerlussuaq and Ice-sheet

Risk mitigation over Kangerlussuaq and Ice-sheet

X-Band

Risk mitigation over Kangerlussuaq and Ice-sheet

Research Area : Calibration and Test Targets

Corner reflector (CR) Calibration of RCS attenuation by snow/ice cover

Fan hub fragment mockup (FHFM) expected target fragment size

Luneburg sphere (LSp) Reference position for registration

Intentional ice lens (I2L) aka "false alarm" mockup

Research area : Trajectory examples

Research area : Data Processing and analysis

Target search method tried in Greenland (before return to France)

Very beautifull ...

but ...

How to find a (broken) needle in (frozen) a haystack ?

Target search method tried in Greenland (before return to France)

- Concentrate effort on lower (L & V/UHF) bands:
 - Try polarimetric analysis => not conclusive
 - Try interferometry to select echoes at the expected target depth => not conclusive
- Try X-Band at more deep angle to decrease path length in snow/ice => not conclusive

At the end of the mission in Greenland, no convincing target detections were found (and FHFM eluded detection) perhaps SAR was not the apropriate tool.

Target search method tried in Greenland (before return to France)

GPR exhaustive scanning by the Danish GEUS team (photo: Stephan Otin, BEA)

- Investigating why the corner reflector RCS was so much attenuated while buried at shallow depht under snow, we reprocess the X-Band acquisition signal with maximum azimuth resolution (~3 cm).
 - Unexpected result : The FHFM buried at ~1,5m depth appeared on the images !

Further investigation showed that the ~30 dB RCS loss of corner reflector/Luneburg sphere in **mostly due to intrinsic target RCS decrease and not propagation losses** during snow/ice penetration.

- -lce/snow heterogeneities inside the corner make the vacuum equivalent corner surfaces neither flat nor orthogonal ⇒ drastic RCS loss.
- -Cover refraction index (~1.3) around the sphere makes it "far sighted" ⇒ drastic RCS loss. Index discontinuity 1.3/1 at the sphere surface also produces an extra echo ⇒ duplication of the sphere echo observed on later X-band images.

- Hower the FHFM was 10 dB below clutter level. Automatic detection with Speckle images would require hundreds of looks for incoherent summation.
 - > We have hundreds of looks :
 - Imaging up to 6 dB down the antenna pattern => 6 looks per channel
 - > 3 parallel tracks per direction
 - 4 directions
 - ➤ 4 polarizations
 - ≻ ...

A total of 432 X-Band looks !

- But this requires
 - High registration accuracy obtained by hybrid differential GPS
 trajectory and internal calibration signal record
 - Ice drift during time separation between acquisition compensation (1,9 m in the 13 days of measurement)
 - Position aberration correction due to refraction error in different direction of measurement

We know the optimal combination law, we have the computing power for, hence we did it !

First X-band reprocessed image from 432 look X-band images (obtained on December 17th) 102000 x 110 000 pixels of 18 x 18 cm² (363 km²) that required 38.7 TB temporary storage and 750 computer hours (running on 120 cores in parallel)

Target Localization

Three candidates target locations and depth transmitted to the Investigation board in February 2019 with 1 best chance

Target Confirmation by GEUS GPR

Target Recovery : 19th June 2019

Target Depth

Target Recovery and Analysis

- Incident : 09/2017
- Test campaign in France : 12/2017
- Preparation mission in Greenland : 02/2018
- Airborne campaign : 04/2018
- Fan Hub Localisation : 02/2019
- Fan Hub Recovery : 06/2019

4 short months to prepare and send 3 tones of material, aircraft and 13 people

- 10 long months of re-processing
- 4 long months of waiting

Reactivity, Flexibility and Never give up

High Quality Radar Dataset

High Quality Radar Dataset

V/UHF 260-450 MHz

Full polarimetric image Image size: 8 x 8 km Resolution :80 x 80 cm

Perspectives and Motivations

- ONERA Self founded Research Project on existing data, based on GEUS cooperation
- Future scientific airborne campaign over Greenland with GEUS, DALO and eventually NATO-SPS ?

Crevasse maping, See ice thickness measurement, people and objects detection, traficability, Iceberg/boat discrimination, ...

This document and the information contained herein is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.